From Optimization to Regret Minimization and Back Again

نویسندگان

  • Ioannis C. Avramopoulos
  • Jennifer Rexford
  • Robert E. Schapire
چکیده

Internet routing is mostly based on static information— it’s dynamicity is limited to reacting to changes in topology. Adaptive performance-based routing decisions would not only improve the performance itself of the Internet but also its security and availability. However, previous approaches for making Internet routing adaptive based on optimizing network-wide objectives are not suited for an environment in which autonomous and possibly malicious entities interact. In this paper, we propose a different framework for adaptive routing decisions based on regret-minimizing online learning algorithms. These algorithms, as applied to routing, are appealing because adopters can independently improve their own performance while being robust to adversarial behavior. However, in contrast to approaches based on optimization theory that provide guarantees from the outset about network-wide behavior, the network-wide behavior if online learning algorithms were to interact with each other is less understood. In this paper, we study this interaction in a realistic Internet environment, and find that the outcome is a stable state and that the optimality gap with respect to the networkwide optimum is small. Our findings suggest that online learning may be a suitable framework for adaptive routing decisions in the Internet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Regret Minimization Approach in Product Portfolio Management with respect to Customers’ Price-sensitivity

In an uncertain and competitive environment, product portfolio management (PPM) becomes more challenging for manufacturers to decide what to make and establish the most beneficial product portfolio. In this paper, a novel approach in PPM is proposed in which the environment uncertainty, competitors’ behavior and customer’s satisfaction are simultaneously considered as the most important criteri...

متن کامل

The convex optimization approach to regret minimization

A well studied and general setting for prediction and decision making is regret minimization in games. Recently the design of algorithms in this setting has been influenced by tools from convex optimization. In this chapter we describe the recent framework of online convex optimization which naturally merges optimization and regret minimization. We describe the basic algorithms and tools at the...

متن کامل

Robustness in portfolio optimization based on minimax regret approach

Portfolio optimization is one of the most important issues for effective and economic investment. There is plenty of research in the literature addressing this issue. Most of these pieces of research attempt to make the Markowitz’s primary portfolio selection model more realistic or seek to solve the model for obtaining fairly optimum portfolios. An efficient frontier in the ...

متن کامل

Efficient Regret Minimization in Non-Convex Games

We consider regret minimization in repeated games with non-convex loss functions. Minimizing the standard notion of regret is computationally intractable. Thus, we define a natural notion of regret which permits efficient optimization and generalizes offline guarantees for convergence to an approximate local optimum. We give gradient-based methods that achieve optimal regret, which in turn guar...

متن کامل

کمینه‌سازی رسوب‌گذاری در مخازن سدها با بهره‌برداری بهینه از تخلیه کننده‌های تحتانی

Reservoir sedimentation is an unavoidable problem which has unsuitable effects on reservoirs such as decreasing of reservoir useful volume, decreasing of dam stability, unsuitable operation of operational gates and penstocks and decreasing of flood control volume. The minimization of reservoir sedimentation is a nonlinear and constrained optimization problem. Constrains imposed include reservoi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008